
Tom Peterka	

tpeterka@mcs.anl.gov	

http://www.mcs.anl.gov/~tpeterka	

Mathematics and Computer Science Division	

Distributed Data Analysis at Scale	

EDF-INRIA Seminar	

June 24, 2016	

“Data movement, rather than computational processing, will be the
constrained resource at exascale.” – Dongarra et al. 2011.	

Examples	

2	

Streamlines and pathlines
in nuclear engineering

Stream surfaces	

in meteorology

FTLE	

in climate modeling

Morse-Smale complex	

in combustion

Voronoi and Delaunay tessellation	

in cosmology

Ptychography	

in materials science

Communication Design Patterns	

You do this yourself	

Can use serial libraries such as OSUFlow, Qhull, VTK
(don’t have to start from scratch)

DIY handles this

Analysis Application Application
Data Model

Analysis
Data Model

Analysis
Algorithm

Particle
Tracing

CFD Unstructured
Mesh

Particles Numerical
Integration

Information
Entropy

Astrophysics AMR Histograms Convolution

Morse-Smale
Complex

Combustion Structured
Grid

Complexes Graph
Simplification

Computational
Geometry

Cosmology Particles Tessellations Voronoi

Communica
tion

Additional

Nearest
neighbor

File I/O,
Domain
decompositi
on, process
assignment,
utilities

Global
reduction,
nearest
neighbor

Global
reduction

Nearest
neighbor

3	

Keys:	

•  Separate custom application code from reusable communication	

•  Recognize that diverse applications use a common set of design patterns.	

	

A Data Movement Library for HPC Data Analysis	

4	

Ad hoc	

 Structured	

void ParallelAlgorithm() {	

 …	

 MPI_Send();	

 …	

 MPI_Recv();	

 …	

 MPI_Barrier();	

 …	

 MPI_File_write();	

}	

void ParallelAlgorithm() {	

 …	

 foreach(&LocalAlgorithm);	

 exchange();	

 reduce();	

 write_blocks();	

}	

void LocalAlgorithm() {	

 …	

}	

Analysis Algorithm
Merge-reduce Swap-reduce

Iterative Nearest Neighbor

OS / Runtime

Application

Data Movement

Analysis Algorithm

Application

OS / Runtime

OSUFlow	

Tess2	

Cian2	

Gaia	

ITL	

VTK	

DIY	

Basic Concepts	

5	

Block Parallelism	

6	

Blocks are units of work and communication; blocks exchange information with
each other using DIY’s communication algorithms. DIY manages block placement
in MPI processes and memory/storage. This allows for flexible, high performance
programs that are easy to write and debug.	

8 processes 4 processes 1 process

Partition Data Into
Blocks	

7	

The block is the basic
unit of data
decomposition. Original
dataset is decomposed
into generic subsets
called blocks, and
associated analysis items
live in the same blocks.
Blocks don’t have to be
“blocky.” Any
subdivision of data (eg., a
set of graph nodes, a
group of particles, etc.) is
a block.	

Structured Grid

AMR Grid

Unstructured Mesh

Graph

Multiple Regular Decompositions	

8	

���������	�
�
����
���
�	��������
���

�����������	���
�	��
��������
������
����������

�������	�

�	�
����	��������
���

����������������
����
����
������
��	����	��������	��
����������
�����
����������

���������	�
���
��
��
����
� ���	�
���������
��
��
����
���
�����

���

���	�
���������
�����
�����
�	���
�
� ���
��
��	����������	���
��	�
���

	

1.  Decomposition

can be a regular
grid of blocks or a
k-d tree.	

2.  For a regular grid,
constraints on
numbers of
blocks can be
imposed to get
pencil or slab
shapes.	

3.  Multiple
decompositions
can co-exist.	

Neighborhood Links	

9	

	

- Limited-range communication	

- Allow arbitrary groupings	

- Distributed, local data structure and
knowledge of other blocks (not
master-slave global knowledge)	

Two examples of 3 out of a total of 25 neighborhoodsExamples of 3 neighborhoods in a regular grid, unstructured mesh, and graph.	

Different Neighborhood Communication Patterns	

10	

DIY provides point to point and different varieties of collectives within a
neighborhood via its enqueue/exchange/dequeue mechanism. 	

�����������	�
���
�
����
�����
�

��
������
�����
��
���	

��������������
�����

��������������
�����
�����
���������������������
��

�������������������������
�����
�
����
��
���������	�����
�
��
�

How to enqueue items
for neighbor exchange	

•  DIY offers several
options	

•  Send to a particular
neighbor or neighbors,
send to all nearby
neighbors, send to all
neighbors	

•  Support for periodic
boundary conditions	

Global
Communication

Patterns	

11	

Round 0
k = 4 0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Round 1
k = 2

Results

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Round 0
k = 4

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

8 10 12 14

8 12

Round 1
k = 2

Results

Swap-reduce	

Merge-reduce	

// initialization	

Master master(world, num_threads, mem_blocks, ...); 	

ContiguousAssigner assigner(world.size(), tot_blocks); 	

decompose(dim, world.rank(), domain, assigner, master);	

	

// compute, neighbor exchange	

master.foreach(&foo);	

master.exchange();	

	

// reduction	

RegularSwapPartners(dim, tot_blocks, k); 	

reduce(master, assigner, partners, &foo);	

	

// callback function for each block	

void foo(void* b, const Proxy& cp, void* aux) 	

{	

 for (size_t i = 0; i < in.size(); i++) 	

 cp.dequeue(cp.link()->target(i), incoming_data); 	

 // do work on incoming data	

 for (size_t i = 0; i < out.size(); i++) 	

 cp.enqueue(cp.link()->target(i), outgoing_data[i]);	

}	

Example Usage	

12	

Performance Matters���
���

Benchmark Results and Full Applications	

13	

Neighbor Exchange Benchmark	

14	

We stress tested our neighbor exchange algorithm for a large number of
small (20-byte) items exchanged.	

Conclusion: Linear complexity with total data size even though the data are divided
into many small items. The user does not need to worry about aggregating data.	

Global Reduction Benchmarks	

15	

Communication time only for our merge algorithm compared with MPI's
reduction algorithm (left) and our swap algorithm compared with MPI's reduce-
scatter algorithm (right).	

16	

Automatic Out-of-Core Algorithms	

In- and out-of core performance of
Delaunay tessellation.	

In- and out-of-core performance
of distance field computation for
watershed segmentation. 	

No source code changes required to switch between in-core and out-of-core.	

17	

Automatic Multithreaded Algorithms	

Automatic threading of Voronoi
tessellation.	

Comparison between manual and
automatic threading of density
estimation.	

No source code changes required to switch between single and multithreaded.	

Peterka et al., High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation. SC14.

Computational Geometry in Cosmology	

18	

Strong and weak scaling for up
to 20483 synthetic particles and
up to 128K processes
(excluding I/O) shows up to
90% strong scaling and up to
98% weak scaling.	

With Dmitriy Morozov and Carolyn Phillips [github.com/diatomic/tess2]	

Load Balancing in Cosmology	

19	

Cosmology simulations have
severe load imbalance.
Tessellating meshes using a k-d
tree instead of regular grid
results in dramatically improved
performance.	

 [github.com/diatomic/tess2]	

Courtesy Dmitriy Morozov

Morozov and Peterka, Efficient Delaunay Tessellation Through K-D Tree Decomposition, to appear SC16.

 Above: Strong scaling of estimating the density of
5123 synthetic particles onto grids of various sizes.	

Left: comparison of tessellation-based and CIC density	

20	

Tessellation-based density estimation
is parameter free, shape free, and
automatically adaptive	

Density Estimation in Cosmology	

With Hadrien Croubois, Nan Li, Steve Rangel, and Franck Cappello

Peterka et al., Self-Adaptive Density Estimation, SIAM SISC 2016.

 [github.com/diatomic/tess2]	

Recap���
	

21	

Block Parallelism	

Block abstraction for parallelizing data analysis allows one to:	

	

• Decompose data into blocks	

• Assign blocks to processing elements	

• Have several decompositions at once	

• Overload blocks, migrate blocks between processing elements	

• Communicate between blocks	

• Migrate blocks in and out of core	

• Thread blocks with finer-grained processing elements	

All made possible by choosing blocks as the parallel abstraction	

	

Think Blocks!	

	

22	

Software: DIY	

23	

Analysis Algorithm
Stochastic Linear Algebra

Iterative Nearest Neighbor

OS / Runtime

Application

Data Movement

Analysis Algorithm

Application

OS / Runtime

Master

Block execution

Block loading

Assigner

Mapping blocks
to

processes

Decomposer

Comm. links

Decomposition

Communication

Global reduction

Local neighbor

I/O

Independent

Collective

Algorithms

K-d tree

Parallel sort

Tom Peterka, ANL	

Dmitriy Morozov, LBNL	

github.com/diatomic/diy2	

	

DIY is a programming model and runtime for HPC block-parallel data analytics.	

•  Block parallelism	

•  Flexible domain decomposition and assignment to resources	

•  Efficient reusable communication patterns	

•  Automatic dual in- and out-of-core execution	

•  Automatic block threading	

References	

24	

DIY Papers	

•  Peterka, Ross, Kendall, Gyulassy, Pascucci, Shen, Lee, Chaudhuri: Scalable Parallel Building

Blocks for Custom Data Analysis. LDAV 2011.	

•  Peterka, Ross: Versatile Communication Algorithms for Data Analysis. EuroMPI 2012.	

•  Morozov, Peterka: Block-Parallel Data Analysis with DIY2. Submitted to LDAV 2016.	

Selected DIY Application Papers	

•  Morozov, Peterka: Efficient Delaunay Tessellation through K-D Tree Decomposition. To

appear SC16.	

•  Peterka, Croubois, Li, Rangel, Cappello: Self-Adaptive Density Estimation of Particle Data.

SIAM Journal on Scientific Computing SISC Special Section on CSE 2015. 	

•  Peterka, Morozov, Phillips: High-Performance Computation of Distributed-Memory

Parallel 3D Voronoi and Delaunay Tessellation. SC14.	

•  Lu, Shen, Peterka: Scalable Computation of Stream Surfaces on Large Scale Vector Fields.

SC14.	

•  Nashed, Vine, Peterka, Deng, Ross, Jacobsen: Parallel Ptychographic Reconstruction. Optics

Express 2014.	

•  Gyulassy, Peterka, Pascucci, Ross: The Parallel Computation of Morse-Smale Complexes.

IPDPS 2012.	

•  Nouanesengsy, Lee, Lu, Shen, Peterka: Parallel Particle Advection and FTLE Computation

for Time-Varying Flow Fields. SC12. 	

•  Chaudhuri, A., Lee-T.-Y., Zhou, B., Wang, C., Xu, T., Shen, H.-W., Peterka, T., Chiang, Y.-J.:

Scalable Computation of Distributions from Large Scale Data Sets. LDAV 2012.	

	

Tom Peterka	

tpeterka@mcs.anl.gov	

http://www.mcs.anl.gov/~tpeterka	

Mathematics and Computer Science Division	

Facilities	

Argonne Leadership Computing Facility (ALCF)	

Oak Ridge National Center for Computational Sciences (NCCS)	

National Energy Research Scientific Computing Center (NERSC)	

	

Funding	

DOE SDMAV Exascale Initiative	

DOE SciDAC SDAV Institute	

	

People	

Dmitriy Morozov (LBNL)	

Acknowledgments

https://github.com/diatomic/diy2	

	

	

	

EDF-INRIA Seminar	

June 24, 2016	

